(Image courtesy of NIST and the University of Colorado at Boulder) In 1995, researchers from JILA reported cooling rubidium atoms to less than 0.17 micro degrees K. Reaching almost absolute zero caused the individual atoms to condense into a "superatom" behaving as a single entity. The graphic shows three-dimensional successive snapshots in time in which the atoms cooled and condensed. The false colors appearing white and light blue show atoms at lowest velocities and coldest temperatures.
What Happens at Absolute Zero?
Delicious Reddit

MAY 06, 2009
April Holladay, HappyNews Columnist

Q: What happens at absolute zero? When something is cooled to Absolute Zero (Kelvin), do the electrons and other sub-atomic particles stop moving? Or does "Absolute Zero" only mean that movement stops at the molecular level (as opposed to the sub-atomic level)?
Peter, Someplace, World
Q: I've heard that at absolute zero molecular motion stops. But what happens to electrons, do they also stop? If they do, what prevents them from falling into the nucleus?
William, Austin, Texas, USA
A: Absolute zero is zero degrees on the Kelvin thermometer scale; it corresponds to about -460 degrees Fahrenheit and -273 degrees Celsius.
Even space isn't that cold. The lingering afterglow of the big bang heats space to 3 degrees Kelvin, on the average. Colder pockets exist. The Boomerang Nebula (at 1 degree K, 5000 light years away) is the coldest known natural spot in the Universe.
We have lowered temperatures of atoms artificially on Earth to almost absolute zero. Atoms near absolute zero slow by orders of magnitude from their normal room-temperature speed. At room temperature, air molecules zip around at about 1,100 mph (1800 km/hr). At about 10 micro degrees Kelvin, Rubidium atoms move at about 0.11 mph (0.18 km/hr) — slower than a three-toed sloth, says physicist Luis Orozco of the University of Maryland.
But matter cannot reach absolute zero, because of the quantum nature of particles. Why this is so has to do with Heisenberg's uncertainty principle (we can never know exactly both a particle's speed and position; in fact, the more precisely we know its speed, the less precisely we know its position).
If an atom could reach absolute zero, its temperature would be precisely zero, which implies an exact speed of zero. But knowing the atom's speed exactly, means we know nothing at all about its position.
"There really is no physical description that allows for [an atom at] zero temperature" emails physicist Erik Ramberg of Fermilab. If an atom could attain absolute zero, its wave function would extend "across the universe", which means the atom is located nowhere. But that's an impossibility. When we try to probe the atom or electron to localize it, then we give it some velocity, and thus a non-zero temperature.
By the way, we can think of an atom either as a particle (a little billiard ball) or as a wave.
As atoms cool to near absolute zero, their waveforms do, indeed, spread out. A waveform as big as the universe seems "weird", but various research groups have cooled atoms to where their wave functions are as big as the inter-atomic distance. When that happens, all of the atoms at that temperature form one big "super-atom," says Mr. Ramberg. This is called a Bose-Einstein condensate.
In 2000, the Helsinki University of Technology lab in Finland, lowered the temperature of a few atoms even farther than the researchers in 1995 — to the coldest temperature yet reached — 0.0001 micro degrees K. But the atoms continued to vibrate, since they were not at (the impossible) absolute zero.
Near absolute zero, electrons "continue to whiz around" inside atoms, says quantum physicist Christopher Foot of the University of Oxford. Moreover, even at absolute zero, atoms would not be completely stationary. They would "jiggle about", but would not have enough energy to change state. In musical terms, it's as if the atom cannot go from middle 'C' to high 'C'. It still vibrates, but cannot change its wave pattern. It's energy is at a minimum.
Further Reading:
Non-quantum explanation of the unattainability of absolute zero by Christopher Foot, University of Oxford
Ultracold atoms and absolute zero, NOVA
Ultra-cold quantum matter group, Christopher Foot, University of Oxford
Bose-Einstein condensation --- what is it?, University of Colorado at Boulder
What is absolute zero? Michigan State University
(Answered April 13, 2008)